翻訳と辞書
Words near each other
・ Congrosoma evermanni
・ Congrove Field and The Tumps
・ Congrua
・ Congrua portio
・ Congruence
・ Congruence (general relativity)
・ Congruence (geometry)
・ Congruence (manifolds)
・ Congruence bias
・ Congruence coefficient
・ Congruence ideal
・ Congruence lattice problem
・ Congruence of squares
・ Congruence of triangles
・ Congruence principle
Congruence relation
・ Congruence subgroup
・ Congruence-permutable algebra
・ Congruent isoscelizers point
・ Congruent melting
・ Congruent number
・ Congruent transformation
・ Congruum
・ Congrès de la Culture Francaise en Floride
・ Congrès International d'Architecture Moderne
・ Congrès Panafricain des Jeunes et des Patriotes
・ Congrégation des témoins de Jéhovah de St-Jérôme-Lafontaine v Lafontaine (Village of)
・ Congrés (Barcelona Metro)
・ Congstar
・ Congtai District


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Congruence relation : ウィキペディア英語版
Congruence relation

In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation.
==Basic example==

The prototypical example of a congruence relation is congruence modulo n on the set of integers. For a given positive integer n, two integers a and b are called congruent modulo n, written
: a \equiv b \pmod
if a - b is divisible by n (or equivalently if a and b have the same remainder when divided by n).
for example, 37 and 57 are congruent modulo 10,
: 37 \equiv 57 \pmod
since 37 - 57 = -20 is a multiple of 10, or equivalently since both 37 and 57 have a remainder of 7 when divided by 10.
Congruence modulo n (for a fixed n) is compatible with both addition and multiplication on the integers. That is,
if
: a_1 \equiv a_2 \pmod and b_1 \equiv b_2 \pmod
then
: a_1 + b_1 \equiv a_2 + b_2 \pmod and a_1 b_1 \equiv a_2b_2 \pmod
The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo n is a congruence relation on the ring of integers, and arithmetic modulo n occurs on the corresponding quotient ring.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Congruence relation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.